Exercise training enhances muscle mitochondrial metabolism in diet-resistant obesity

0
153
Exercise training enhances muscle mitochondrial metabolism in diet-resistant obesity

  • 1.
    • Flegal KM
    • Kit BK
    • Orpana H
    • Graubard BI.

    Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis.

    JAMA. 2013; 309: 71-82

  • 2.

    Mechanisms, pathophysiology, and management of obesity.

    N Engl J Med. 2017; 376: 254-266

  • 3.
    • Lemstra M
    • Bird Y
    • Nwankwo C
    • Rogers M
    • Moraros J.

    Weight loss intervention adherence and factors promoting adherence: a meta-analysis.

    Patient Prefer Adher. 2016; 10: 1547-1559

  • 4.
    • Dent R
    • McPherson R
    • Harper M-E.

    Factors affecting weight loss variability in obesity.

    Metabolism. 2020; 113154388

  • 5.
    • Stinson EJ
    • Piaggi P
    • Votruba SB
    • et al.

    Is dietary nonadherence unique to obesity and weight loss? Results from a randomized clinical trial.

    Obesity (Silver Spring). 2020; 28: 2020-2027

  • 6.
    • Leibel RL
    • Rosenbaum M
    • Hirsch J.

    Changes in energy expenditure resulting from altered body weight.

    N Engl J Med. 1995; 332: 621-628

  • 7.

    Adaptive thermogenesis in humans.

    Int J Obes. 2010; 34: S47-S55

  • 8.
    • Reinhardt M
    • Thearle MS
    • Ibrahim M
    • et al.

    A human thrifty phenotype associated with less weight loss during caloric restriction.

    Diabetes. 2015; 64: 2859-2867

  • 9.
    • Tremblay A
    • Royer MM
    • Chaput JP
    • Doucet E.

    Adaptive thermogenesis can make a difference in the ability of obese individuals to lose body weight.

    Int J Obes. 2013; 37: 759-764

  • 10.
    • Vinales KL
    • Begaye B
    • Bogardus C
    • Walter M
    • Krakoff J
    • Piaggi P.

    FGF21 is a hormonal mediator of the human “thrifty” metabolic phenotype.

    Diabetes. 2019; 68: 318-323

  • 11.
    • Harper ME
    • Dent R
    • Monemdjou S
    • et al.

    Decreased mitochondrial proton leak and reduced expression of uncoupling protein 3 in skeletal muscle of obese diet-resistant women.

    Diabetes. 2002; 51: 2459-2466

  • 12.
    • Thrush AB
    • Zhang R
    • Chen W
    • et al.

    Lower mitochondrial proton leak and decreased glutathione redox in primary muscle cells of obese diet-resistant versus diet-sensitive humans.

    J Clin Endocrinol Metab. 2014; 99: 4223-4230

  • 13.
    • Adamo KB
    • Dent R
    • Langefeld CD
    • et al.

    Peroxisome proliferator-activated receptor γ 2 and acyl-CoA synthetase 5 polymorphisms influence diet response.

    Obesity (Silver Spring). 2007; 15: 1068-1075

  • 14.
    • Matsuo T
    • Nakata Y
    • Katayama Y
    • et al.

    PPARG genotype accounts for part of individual variation in body weight reduction in response to calorie restriction.

    Obesity (Silver Spring). 2009; 17: 1924-1931

  • 15.
    • Nikpay M
    • Lau P
    • Soubeyrand S
    • et al.

    SGCG rs679482 associates with weight loss success in response to an intensively supervised outpatient program.

    Diabetes. 2020; 69: 2017-2026

  • 16.
    • Gerrits MF
    • Ghosh S
    • Kavaslar N
    • et al.

    Distinct skeletal muscle fiber characteristics and gene expression in diet-sensitive versus diet-resistant obesity.

    J Lipid Res. 2010; 51: 2394-2404

  • 17.
    • Thrush AB
    • Antoun G
    • Nikpay M
    • et al.

    Diet-resistant obesity is characterized by a distinct plasma proteomic signature and impaired muscle fiber metabolism.

    Int J Obes. 2018; 42: 353-362

  • 18.
    • Dent RM
    • Penwarden RM
    • Harris N
    • Hotz SB.

    Development and evaluation of patient-centered software for a weight-management clinic.

    Obes Res. 2002; 10: 651-656

  • 19.

    A Practical Approach to Strength Training.

    Masters Press,
    Grand Rapids (MI)1989

  • 20.
    • Haman F
    • Péronnet F
    • Kenny GP
    • et al.

    Effect of cold exposure on fuel utilization in humans: plasma glucose, muscle glycogen, and lipids.

    J Appl Physiol. 2002; 93: 77-84

  • 21.

    Psychophysical bases of perceived exertion.

    Med Sci Sport Exerc. 1982; 14: 377-381

  • 22.
    • Bloemberg D
    • Quadrilatero J.

    Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis.

    PLoS One. 2012; 7: e35273

  • 23.
    • Mookerjee SA
    • Gerencser AA
    • Nicholls DG
    • Brand MD.

    Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements.

    J Biol Chem. 2017; 292: 7189-7207

  • 24.
    • Pileggi CA
    • Hedges CP
    • Segovia SA
    • et al.

    Maternal high fat diet alters skeletal muscle mitochondrial catalytic activity in adult male rat offspring.

    Front Physiol. 2016; 7: 546

  • 25.
    • Acín-Pérez R
    • Fernández-Silva P
    • Peleato ML
    • Pérez-Martos A
    • Enriquez JA.

    Respiratory active mitochondrial supercomplexes.

    Mol Cell. 2008; 32: 529-539

  • 26.
    • Lu W
    • Clasquin MF
    • Melamud E
    • Amador-Noguez D
    • Caudy AA
    • Rabinowitz JD.

    Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer.

    Anal Chem. 2010; 82: 3212-3221

  • 27.
    • Waterval WAH
    • Scheijen JLJM
    • Ortmans-Ploemen MMJC
    • Habets-van der Poel CD
    • Bierau J.

    Quantitative UPLC-MS/MS analysis of underivatised amino acids in body fluids is a reliable tool for the diagnosis and follow-up of patients with inborn errors of metabolism.

    Clin Chim Acta. 2009; 407: 36-42

  • 28.

    A rapid method of total lipid extraction and purification.

    Can J Biochem Physiol. 1959; 37: 911-917

  • 29.
    • Granger MW
    • Liu H
    • Fowler CF
    • et al.

    Distinct disruptions in Land’s cycle remodeling of glycerophosphocholines in murine cortex mark symptomatic onset and progression in two Alzheimer’s disease mouse models.

    J Neurochem. 2019; 149: 499-517

  • 30.
    • Robnik-Šikonja M
    • Kononenko I.

    Theoretical and empirical analysis of ReliefF and RReliefF.

    Mach Learn. 2003; 53: 23-69

  • 31.
    • Székely GJ
    • Rizzo ML
    • Bakirov NK.

    Measuring and testing dependence by correlation of distances.

    Ann Stat. 2007; 35: 2769-2794

  • 32.
    • Pouliot M-C
    • Després J-P
    • Lemieux S
    • et al.

    Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women.

    Am J Cardiol. 1994; 73: 460-468

  • 33.

    Factors associated with percent change in visceral versus subcutaneous abdominal fat during weight loss: findings from a systematic review.

    Int J Obes. 2008; 32: 619-628

  • 34.
    • Knudsen N
    • Laurberg P
    • Rasmussen LB
    • et al.

    Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population.

    J Clin Endocrinol Metab. 2005; 90: 4019-4024

  • 35.
    • Expert Panel on Detection E

    Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III).

    JAMA. 2001; 285: 2486-2497

  • 36.

    Is bioelectrical impedance accurate for use in large epidemiological studies?.

    Nutr J. 2008; 7: 1-7

  • 37.
    • Lavie CJ
    • Ozemek C
    • Carbone S
    • Katzmarzyk PT
    • Blair SN.

    Sedentary behavior, exercise, and cardiovascular health.

    Circ Res. 2019; 124: 799-815

  • 38.
    • Barry VW
    • Caputo JL
    • Kang M.

    The joint association of fitness and fatness on cardiovascular disease mortality: a meta-analysis.

    Prog Cardiovasc Dis. 2018; 61: 136-141

  • 39.
    • Halliday D
    • Hesp R
    • Stalley SF
    • Warwick PM
    • Altman DG
    • Garrow JS.

    Resting metabolic rate, weight, surface area and body composition in obese women.

    Int J Obes. 1979; 3: 1-6

  • 40.
    • Whytock KL
    • Corbin KD
    • Parsons SA
    • et al.

    Metabolic adaptation characterizes short-term resistance to weight loss induced by a low-calorie diet in overweight/obese individuals.

    Am J Clin Nutr. 2021; 114: 267-280

  • 41.
    • Pileggi CA
    • Parmar G
    • Harper M.

    The lifecycle of skeletal muscle mitochondria in obesity.

    Obes Rev. 2021; 22: e13164

  • 42.
    • Ritov VB
    • Menshikova EV
    • He J
    • Ferrell RE
    • Goodpaster BH
    • Kelley DE.

    Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes.

    Diabetes. 2005; 54: 8-14

  • 43.
    • Menshikova EV
    • Ritov VB
    • Dube JJ
    • et al.

    Calorie restriction-induced weight loss and exercise have differential effects on skeletal muscle mitochondria despite similar effects on insulin sensitivity.

    J Gerontol A Biol Sci Med Sci. 2017; 73: 81-87

  • 44.

    Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate.

    Am J Physiol Physiol. 1996; 271: C1380-C1389

  • 45.

    Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3.

    Cell Metab. 2005; 2: 85-93

  • 46.
    • Bertholet AM
    • Chouchani ET
    • Kazak L
    • et al.

    H+ transport is an integral function of the mitochondrial ADP/ATP carrier.

    Nature. 2019; 571: 515-520

  • 47.
    • Brand MD
    • Pakay JL
    • Ocloo A
    • et al.

    The basal proton conductance of mitochondria depends on adenine nucleotide translocase content.

    Biochem J. 2005; 392: 353-362

  • 48.
    • Lapuente-Brun E
    • Moreno-Loshuertos R
    • Acin-Perez R
    • et al.

    Supercomplex assembly determines electron flux in the mitochondrial electron transport chain.

    Science. 2013; 340: 1567-1570

  • 49.
    • Greggio C
    • Jha P
    • Kulkarni SS
    • et al.

    Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle.

    Cell Metab. 2017; 25: 301-311

  • 50.
    • Geidenstam N
    • Al-Majdoub M
    • Ekman M
    • Spégel P
    • Ridderstråle M.

    Metabolite profiling of obese individuals before and after a one year weight loss program.

    Int J Obes. 2017; 41: 1369-1378

  • 51.
    • Stroeve JHM
    • Saccenti E
    • Bouwman J
    • et al.

    Weight loss predictability by plasma metabolic signatures in adults with obesity and morbid obesity of the DiOGenes study.

    Obesity (Silver Spring). 2016; 24: 379-388

  • 52.
    • Piccolo BD
    • Keim NL
    • Fiehn O
    • Adams SH
    • Van Loan MD
    • Newman JW.

    Habitual physical activity and plasma metabolomic patterns distinguish individuals with low vs. high weight loss during controlled energy restriction.

    J Nutr. 2015; 145: 681-690

  • 53.
    • Tulipani S
    • Griffin J
    • Palau-Rodriguez M
    • et al.

    Metabolomics-guided insights on bariatric surgery versus behavioral interventions for weight loss.

    Obesity (Silver Spring). 2016; 24: 2451-2466

  • 54.

    One-carbon metabolism in health and disease.

    Cell Metab. 2017; 25: 27-42

  • 55.

    Serine and one-carbon metabolism in cancer.

    Nat Rev Cancer. 2016; 16: 650-662

  • 56.
    • Song J-W
    • Lam SM
    • Fan X
    • et al.

    Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis.

    Cell Metab. 2020; 32: 188-202

  • 57.

    Adenosine triphosphate conservation in metabolic regulation: rat liver citrate cleavage enzyme.

    J Biol Chem. 1967; 242: 3239-3241

  • 58.
    • Larsen S
    • Nielsen J
    • Hansen CN
    • et al.

    Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects.

    J Physiol. 2012; 590: 3349-3360

  • 59.

    Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism.

    Biochim Biophys Acta. 2003; 1632: 16-30

  • 60.
    • Bergman BC
    • Brozinick JT
    • Strauss A
    • et al.

    Muscle sphingolipids during rest and exercise: a C18: 0 signature for insulin resistance in humans.

    Diabetologia. 2016; 59: 785-798

  • 61.
    • Chung JO
    • Koutsari C
    • Blachnio-Zabielska AU
    • Hames KC
    • Jensen MD.

    Intramyocellular ceramides: subcellular concentrations and fractional de novo synthesis in postabsorptive humans.

    Diabetes. 2017; 66: 2082-2091

  • 62.
    • Li Z
    • Zhang H
    • Liu J
    • et al.

    Reducing plasma membrane sphingomyelin increases insulin sensitivity.

    Mol Cell Biol. 2011; 31: 4205-4218

  • 63.
    • Eisinger K
    • Liebisch G
    • Schmitz G
    • Aslanidis C
    • Krautbauer S
    • Buechler C.

    Lipidomic analysis of serum from high fat diet induced obese mice.

    Int J Mol Sci. 2014; 15: 2991-3002

  • 64.
    • Jayedi A
    • Soltani S
    • Zargar MS
    • Khan TA
    • Shab-Bidar S.

    Central fatness and risk of all cause mortality: systematic review and dose-response meta-analysis of 72 prospective cohort studies.

    BMJ. 2020; 370: m3324

  • 65.

    Differences in lipolysis between human subcutaneous and omental adipose tissues.

    Ann Med. 1995; 27: 435-438

  • 66.
    • Preis SR
    • Massaro JM
    • Robins SJ
    • et al.

    Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study.

    Obesity (Silver Spring). 2010; 18: 2191-2198

  • 67.
    • Rebuffé-Scrive M
    • Andersson B
    • Olbe L
    • Björntorp P.

    Metabolism of adipose tissue in intraabdominal depots of nonobese men and women.

    Metabolism. 1989; 38: 453-458

  • 68.
    • Tchernof A
    • Bélanger C
    • Morisset A-S
    • et al.

    Regional differences in adipose tissue metabolism in women: minor effect of obesity and body fat distribution.

    Diabetes. 2006; 55: 1353-1360

  • 69.
    • Nicklas BJ
    • Rogus EM
    • Colman EG
    • Goldberg AP.

    Visceral adiposity, increased adipocyte lipolysis, and metabolic dysfunction in obese postmenopausal women.

    Am J Physiol Metab. 1996; 270: E72-E78

  • 70.
    • Bergman BC
    • Goodpaster BH.

    Exercise and muscle lipid content, composition, and localization: influence on muscle insulin sensitivity.

    Diabetes. 2020; 69: 848-858

  • 71.

    Long-term weight loss after diet and exercise: a systematic review.

    Int J Obes. 2005; 29: 1168-1174

  • 72.
    • Avenell A
    • Brown TJ
    • McGee MA
    • et al.

    What interventions should we add to weight reducing diets in adults with obesity? A systematic review of randomized controlled trials of adding drug therapy, exercise, behaviour therapy or combinations of these interventions.

    J Hum Nutr Diet. 2004; 17: 293-316

  • 73.
    • Foster-Schubert KE
    • Alfano CM
    • Duggan CR
    • et al.

    Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese postmenopausal women.

    Obesity (Silver Spring). 2012; 20: 1628-1638

  • 74.

    Out-running ‘bad’diets: beyond weight loss there is clear evidence of the benefits of physical activity.

    Br J Sports Med. 2019; 53: 854-855

  • 75.
    • Johns DJ
    • Hartmann-Boyce J
    • Jebb SA
    • Aveyard P
    • Group BWMR.

    Diet or exercise interventions vs combined behavioral weight management programs: a systematic review and meta-analysis of direct comparisons.

    J Acad Nutr Diet. 2014; 114: 1557-1568

  • 76.

    Exercise training response heterogeneity: physiological and molecular insights.

    Diabetologia. 2017; 60: 2329-2336

  • 77.
    • Thomas DM
    • Bouchard C
    • Church T
    • et al.

    Why do individuals not lose more weight from an exercise intervention at a defined dose? An energy balance analysis.

    Obes Rev. 2012; 13: 835-847

  • 78.
    • Ross R
    • Dagnone D
    • Jones PJH
    • et al.

    Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men: a randomized, controlled trial.

    Ann Intern Med. 2000; 133: 92-103

  • 79.
    • Colleluori G
    • Aguirre L
    • Phadnis U
    • et al.

    Aerobic plus resistance exercise in obese older adults improves muscle protein synthesis and preserves myocellular quality despite weight loss.

    Cell Metab. 2019; 30: 261-273

  • 80.
    • Chomentowski P
    • Dubé JJ
    • Amati F
    • et al.

    Moderate exercise attenuates the loss of skeletal muscle mass that occurs with intentional caloric restriction–induced weight loss in older, overweight to obese adults.

    J Gerontol A Biol Sci Med Sci. 2009; 64: 575-580

  • 81.
    • Cermak NM
    • Snijders T
    • McKay BR
    • et al.

    Eccentric exercise increases satellite cell content in type II muscle fibers.

    Med Sci Sport Exerc. 2013; 45: 230-237

  • 82.
    • Figueiredo VC
    • Caldow MK
    • Massie V
    • Markworth JF
    • Cameron-Smith D
    • Blazevich AJ.

    Ribosome biogenesis adaptation in resistance training-induced human skeletal muscle hypertrophy.

    Am J Physiol Metab. 2015; 309: E72-E83

  • 83.
    • Starritt EC
    • Angus D
    • Hargreaves M.

    Effect of short-term training on mitochondrial ATP production rate in human skeletal muscle.

    J Appl Physiol. 1999; 86: 450-454

  • 84.
    • Barres R
    • Yan J
    • Egan B
    • et al.

    Acute exercise remodels promoter methylation in human skeletal muscle.

    Cell Metab. 2012; 15: 405-411

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here