The effect of fatigue on electromechanical response times in basketball players with and without persistent low back pain

0
173

  • Lee, S. W. & Kim, S. Y. Comparison of chronic low-back pain patients hip range of motion with lumbar instability. J. Phys. Ther. Sci. 27(2), 349–351 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • de Sousa, C. S. et al. Lower limb muscle strength in patients with low back pain: A systematic review and meta-analysis. J. Musculoskelet. Neuronal. Interact. 19(1), 69–78 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Roios, E. et al. Cognitive representations in low back pain in patients receiving chiropractic versus physiotherapy treatment. J. Health Psychol. 22(8), 1012–1024 (2017).

    MathSciNet 
    PubMed 

    Google Scholar 

  • Mense, S. Nociception from skeletal muscle in relation to clinical muscle pain. Pain 54(3), 241–289 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Oyarzo, C. A. et al. Postural control and low back pain in elite athletes comparison of static balance in elite athletes with and without low back pain. J. Back Musculoskelet. Rehabil. 27(2), 141–146 (2014).

    PubMed 

    Google Scholar 

  • Rossi, S. et al. Early somatosensory processing during tonic muscle pain in humans: Relation to loss of proprioception and motor “defensive” strategies. Clin. Neurophysiol. 114(7), 1351–1358 (2003).

    PubMed 

    Google Scholar 

  • Hewett, T. E., Myer, G. D. & Ford, K. R. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am. J. Sports Med. 34(2), 299–311 (2006).

    PubMed 

    Google Scholar 

  • McLean, S. G., Huang, X. & van den Bogert, A. J. Investigating isolated neuromuscular control contributions to non-contact anterior cruciate ligament injury risk via computer simulation methods. Clin. Biomech. (Bristol, Avon) 23(7), 926–936 (2008).

    Google Scholar 

  • Griffin, L. Y. et al. Understanding and preventing noncontact anterior cruciate ligament injuries: A review of the Hunt Valley II meeting, January 2005. Am. J. Sports Med. 34(9), 1512–1532 (2006).

    PubMed 

    Google Scholar 

  • Chappell, J. D. et al. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am. J. Sports Med. 30(2), 261–267 (2002).

    MathSciNet 
    PubMed 

    Google Scholar 

  • Yu, B., Lin, C. F. & Garrett, W. E. Lower extremity biomechanics during the landing of a stop-jump task. Clin. Biomech. (Bristol, Avon) 21(3), 297–305 (2006).

    Google Scholar 

  • Myer, G. D., Ford, K. R., Khoury, J., Succop, P. & Hewett T. E. Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury. Br J Sports Med. Apr;45(4), 245–252. https://doi.org/10.1136/bjsm.2009.069351 (2002).

    Article 

    Google Scholar 

  • Mizuno, K. et al. Gender dimorphic ACL strain in response to combined dynamic 3D knee joint loading: Implications for ACL injury risk. Knee 16(6), 432–440 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheikhhoseini, R. et al. Altered motor control in athletes with low back pain: A literature review. Ann. Appl. Sport Sci. 4(4), 43–50 (2016).

    Google Scholar 

  • Besier, T. F. et al. Anticipatory effects on knee joint loading during running and cutting maneuvers. Med. Sci. Sports Exerc. 33(7), 1176–1181 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Besier, T. F. et al. External loading of the knee joint during running and cutting maneuvers. Med. Sci. Sports Exerc. 33(7), 1168–1175 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Borotikar, B. S. et al. Combined effects of fatigue and decision making on female lower limb landing postures: Central and peripheral contributions to ACL injury risk. Clin. Biomech. (Bristol, Avon) 23(1), 81–92 (2008).

    Google Scholar 

  • McLean, S. G. & Samorezov, J. E. Fatigue-induced ACL injury risk stems from a degradation in central control. Med. Sci. Sports. Exerc. 41(8), 1661–1672 (2009).

    PubMed 

    Google Scholar 

  • Abernethy, B. Training the visual-perceptual skills of athletes: Insights from the study of motor expertise. Am. J. Sports Med. 24(6_suppl), S89–S92 (1996).

  • Baker, J., Côté, J. & Abernethy, B. Learning from the experts: Practice activities of expert decision makers in sport. Res. Q. Exerc. Sport 74(3), 342–347 (2003).

    PubMed 

    Google Scholar 

  • Botwinick, J. & Thompson, L. W. Premotor and motor components of reaction time. J. Exp. Psychol. 71(1), 9–15 (1966).

    CAS 
    PubMed 

    Google Scholar 

  • Szpala, A. & Rutkowska-Kucharska, A. Electromechanical response times in the knee muscles in young and old women. Muscle Nerve 56(6), E147-e153 (2017).

    PubMed 

    Google Scholar 

  • Mann, D. T. et al. Perceptual-cognitive expertise in sport: A meta-analysis. J. Sport Exerc. Psychol. 29(4), 457–478 (2007).

    PubMed 

    Google Scholar 

  • Besier, T. F., Lloyd, D. G. & Ackland, T. R. Muscle activation strategies at the knee during running and cutting maneuvers. Med. Sci. Sports Exerc. 35(1), 119–127 (2003).

    PubMed 

    Google Scholar 

  • Levin, O. et al. Proactive and reactive neuromuscular control in subjects with chronic ankle instability: Evidence from a pilot study on landing. Gait Posture 41(1), 106–111 (2015).

    PubMed 

    Google Scholar 

  • McLean, S. G., Huang, X. & van den Bogert, A. J. Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: Implications for ACL injury. Clin. Biomech. (Bristol, Avon) 20(8), 863–870 (2005).

    Google Scholar 

  • Palmieri-Smith, R. M. et al. Association of quadriceps and hamstrings cocontraction patterns with knee joint loading. J. Athl. Train 44(3), 256–263 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cairns, S. P. et al. Evaluation of models used to study neuromuscular fatigue. Exerc. Sport Sci. Rev. 33(1), 9–16 (2005).

    MathSciNet 
    PubMed 

    Google Scholar 

  • Miura, K. et al. The effect of local and general fatigue on knee proprioception. Arthroscopy 20(4), 414–418 (2004).

    PubMed 

    Google Scholar 

  • Hiemstra, L. A., Lo, I. K. & Fowler, P. J. Effect of fatigue on knee proprioception: Implications for dynamic stabilization. J. Orthop. Sports Phys. Ther. 31(10), 598–605 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Nyland, J. A. et al. The effect of quadriceps femoris, hamstring, and placebo eccentric fatigue on knee and ankle dynamics during crossover cutting. J. Orthop. Sports Phys. Ther. 25(3), 171–184 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, S. et al. Effects of muscle fatigue and temperature on electromechanical delay. Electromyogr. Clin. Neurophysiol. 38(2), 67–73 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Conchola, E. C. et al. Effects of neuromuscular fatigue on electromechanical delay of the leg extensors and flexors in young men and women. Muscle Nerve 52(5), 844–851 (2015).

    PubMed 

    Google Scholar 

  • McLean, S. G. et al. Impact of fatigue on gender-based high-risk landing strategies. Med. Sci. Sports Exerc. 39(3), 502–514 (2007).

    PubMed 

    Google Scholar 

  • Perotto, A. & Delagi, E. F. Anatomical guide for the electromyographer: The limbs and trunk. In 5th ed. 2011, Springfield, Ill.: Charles C. Thomas. xvii, 377 p (2011).

  • Hurd, W. J., Chmielewski, T. L. & Snyder-Mackler, L. Perturbation-enhanced neuromuscular training alters muscle activity in female athletes. Knee Surg. Sports Traumatol. Arthrosc. 14(1), 60–69 (2006).

    PubMed 

    Google Scholar 

  • Chappell, J. D. et al. Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am. J. Sports Med. 33(7), 1022–1029 (2005).

    PubMed 

    Google Scholar 

  • Sigward, S. M. & Powers, C. M. Loading characteristics of females exhibiting excessive valgus moments during cutting. Clin. Biomech. (Bristol, Avon) 22(7), 827–833 (2007).

    Google Scholar 

  • Pearcy, M., Portek, I. & Shepherd, J. The effect of low-back pain on lumbar spinal movements measured by three-dimensional X-ray analysis. Spine (Phila Pa 1976) 10(2), 150–153 (1985).

    CAS 

    Google Scholar 

  • Richardson, C. A. et al. The relation between the transversus abdominis muscles, sacroiliac joint mechanics, and low back pain. Spine (Phila Pa 1976) 27(4), 399–405 (2002).

    Google Scholar 

  • Kubo, K. et al. Changes in the elastic properties of tendon structures following 20 days bed-rest in humans. Eur. J. Appl. Physiol. 83(6), 463–468 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Mero, A. & Komi, P. V. Reaction time and electromyographic activity during a sprint start. Eur. J. Appl. Physiol. Occup. Physiol. 61(1–2), 73–80 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Churchland, A. K., Kiani, R. & Shadlen, M. N. Decision-making with multiple alternatives. Nat. Neurosci. 11(6), 693–702 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swinnen, S. P. et al. The organization of patterns of multilimb coordination as revealed through reaction time measures. Exp. Brain Res. 104(1), 153–162 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Russell, D. F. et al. Quantitative measurement of lower limb mechanical alignment and coronal knee laxity in early flexion. Knee 21(6), 1063–1068 (2014).

    PubMed 

    Google Scholar 

  • Zhou, S. et al. Electromechanical delay in isometric muscle contractions evoked by voluntary, reflex and electrical stimulation. Eur. J. Appl. Physiol. Occup. Physiol. 70(2), 138–145 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Moore, B. D. et al. The differential effects of fatigue on reflex response timing and amplitude in males and females. J. Electromyogr. Kinesiol. 12(5), 351–360 (2002).

    PubMed 

    Google Scholar 

  • Blanpied, P. & Oksendahl, H. Reaction times and electromechanical delay in reactions of increasing and decreasing force. Percept. Mot. Skills 103(3), 743–754 (2006).

    PubMed 

    Google Scholar 

  • Kawabe-Himeno, S. Effects of force output and preparatory period on fractionated reaction time. Percept. Mot. Skills 76(2), 415–424 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, S. et al. Effects of fatigue and sprint training on electromechanical delay of knee extensor muscles. Eur. J. Appl. Physiol. Occup. Physiol. 72(5–6), 410–416 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • McLean, S. G. et al. Knee joint anatomy predicts high-risk in vivo dynamic landing knee biomechanics. Clin. Biomech. 25(8), 781–788 (2010).

    Google Scholar 

  • García-Peñalver, U. J., Palop-Montoro, M. V. & Manzano-Sánchez, D. Effectiveness of the muscle energy technique versus osteopathic manipulation in the treatment of sacroiliac joint dysfunction in athletes. Int. J. Environ. Res. Public Health 17(12), 4490. https://doi.org/10.3390/ijerph17124490 (2020).

    Article 

    Google Scholar 

  • van Dieën, J. H. et al. Motor control changes in low back pain: Divergence in presentations and mechanisms. J. Orthop. Sports Phys. Ther. 49(6), 370–379 (2019).

    PubMed 

    Google Scholar 

  • Sheikhhoseini, R. et al. Altered lower limb kinematics during jumping among athletes with persistent low back pain. Ann. Appl. Sport Sci. 6(2), 23–30 (2018).

    Google Scholar 

  • Jalalvand, A. & Anbarian, M. Effect of lower limb muscle fatigue on ground reaction force components during landing in people with nonspecific chronic low back pain. J. Sport Rehabil. 28(8), 847–853 (2019).

    PubMed 

    Google Scholar 

  • Johanson, E. et al. The effect of acute back muscle fatigue on postural control strategy in people with and without recurrent low back pain. Eur. Spine J. 20(12), 2152–2159 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here