Clark, S. & Horton, R. Low back pain: a significant global issue. The Lancet 391 2303 (2018).
Article Google Scholar
Koes, B. W., Backes, D. & Bindels, P. J. Pharmacotherapy for chronic low back pain Future and present options. Expert Opin. Pharmacother. 19, 537-545 (2018).
Article CAS Google Scholar
Chou, R. and. The effectiveness and dangers of long-term opioid therapy for chronic pain A systematic review of the National Institutes of Health Pathways to Prevention Workshop. Ann. Intern. Med. 162, 276-286 (2015).
Article Google Scholar
Chou, R. Chou, R. Opioid treatments for chronic pain. Report No. : 20-EHC011. PMID: 32338848. (Agency of Healthcare Quality Research and Quality (US), Rockville, MD 2020).
Konno, S.-I. Konno, S.-I. Sekiguchi, M. Association between lower back pain. J. Orthop. Sci. 23, 3-7 (2018).
Article Google Scholar
Li, T., Zhang, S. & Kurata, J. Suppressed descending pain modulation and enhanced sensorimotor network for patients suffering from long-term back pain. back pain. J. Anesth. 32, 831-843 (2018).
Article CAS Google Scholar
Ng, S. K. et al. The connection between functional and structural brain changes as well as altered emotion and cognitive function in patients with chronic low back neural changes due to pain. Clin. J. Pain 34, 237-261 (2018).
Article Google Scholar
Tu, Y. and. Abnormal medial prefrontal cortex functional connectivity and its connection with clinical signs of chronic lower back pain. pain 160 1308 (2019).
Article Google Scholar
De Ridder, D., Adhia, D. and Vanneste, S. The anatomy of suffering and pain within the human brain, and the clinical implications. Neurosci. Biobehav. Rev. 130, 125-146 (2021).
Article Google Scholar
Vanneste, Vanneste. and De Ridder, D. Chronic pain is a result of an imbalance in the brain between pain-related input and pain suppression. Neuro Communications. 3, Fcab014 (2021).
Article Google Scholar
Kim, J. et al. Somatotopically-specific primary somatosensory connectivity to salience and default mode networks encodes clinical pain. pain 160 1594 (2019).
Article Google Scholar
De Ridder, D. & Vanneste, S. Occipital nerve field direct current stimulation in the transcranial region restores the imbalance between pain-detecting and pain inhibiting pathways in the fibromyalgia. Neurotherapeutics 14, 484 (2017).
Article Google Scholar
De Ridder, D. & Vanneste, S. Burst and tonic spinal cord stimulation: different but common mechanisms in the brain. Neuromodul. Technol. Neural Interface 19, 47-59 (2016).
Article Google Scholar
Sitaram, R. and. Closed-loop brain training The science behind neurofeedback. Nat. Rev. Neurosci. 18, 86-100 (2017).
Article CAS Google Scholar
Patel, K. Patel, K. Effects of neurofeedback in the treatment for chronic pain. a comprehensive review of and meta-analysis on clinical studies. Eur. J. Pain 24, 1440-1457 (2020).
Article Google Scholar
Roy, R., de la Vega, R., Jensen, M. P. & Miro, J. Neurofeedback for pain management: A systematic review. Front. Neurosci. 14, 671 (2020).
Article Google Scholar
Hesam-Shariati, N. et al. The analgesic effect of electroencephalographic neurofeedback for people with chronic pain: A systematic review and meta-analysis. Eur. J. Neurol. 29, 921-936 (2022).
Article Google Scholar
Mayaud, L. and. Alpha-phase synchrony EEG training for multi-resistant chronic low back pain patients: A pilot open-label study. Eur. Spine J. 28, 2487-2501 (2019).
Article Google Scholar
Shimizu, K. Shimizu, K. New treatment strategy for chronic low back pain that relies on neural stimulation using alpha waves. Sci. Rep. 12, 1-10 (2022).
Article Google Scholar
Chan, A. W., Mohajerani, M. H., LeDue, J. M., Wang, Y. T. and Murphy, T. H. Mesoscale infraslow spontaneous membrane potential fluctuations mimic high-frequency cortical patterns. Nat. Commun. 6, 1-12 (2015).
Article Google Scholar
Pan, W.-J., Thompson, G. J., Magnuson, M. E., Jaeger, D. & Keilholz, S. Infraslow LFP is associated with resting-state fMRI BOLD signals. Neuroimage 74, 288-297 (2013).
Article Google Scholar
Watson, B. O. The physiologic and cognitive effects from the infraslow oscillation. Front. Syst. Neurosci. 12, 44 (2018).
Article Google Scholar
Alshelh, Z. and. Chronic neuropathic pain The cause is the rhythm. J. Neurosci. 36, 1008-1018 (2016).
Article CAS Google Scholar
Zhang, B. and. Identifying brain regions that are associated with neuropathology in persistent low back pain A resting-state amplitude low-frequency oscillation study. Br. J. Anaesth. 123, e303-e311 (2019).
Article Google Scholar
Zhou, F. Zhou, F. Altered low-frequency oscillation magnitude of resting-state-fMRI in patients suffering from discogenic low-back pain or leg pain. J. Pain Res. 11, 165, (2018).
Article Google Scholar
Leong, S. L. et al. A double-blind, randomised placebo-controlled parallel study of closed-loop training of the brain during food addiction. Sci. Rep. 8, 11659-11659. https://doi.org/10.1038/s41598-018-30181-7 (2018).
Article ADS CAS Google Scholar
Balt, K., Du Toit, P. J., Smith, M. and Janse van Rensburg, C. The effects of neurofeedback using infraslow frequency on autonomic nervous system functioning for adults suffering from anxiety and related illnesses (2020).
Perez, T. M. et al. Infraslow closed-loop brain training to treat depression and anxiety (ISAD) is a procedure for a double-blind, randomized controlled pilot study using shams for females who suffer from internalizing disorders. Trials 23, 949. https://doi.org/10.1186/s13063-022-06863-z (2022).
Article Google Scholar
Mathew, J., Adhia, D. B., Smith, M. L., De Ridder, D. & Mani, R. Source localized neurofeedback training using infraslow for people suffering from chronic pain knee osteoarthritis: A randomised double-blind, sham-controlled clinical study. Front. Neurosci. 16, 899772. https://doi.org/10.3389/fnins.2022.899772 (2022).
Article Google Scholar
Roland, M. & Morris, R. A study of the natural causes of back pain. Part 1: Development of a sensitive and reliable measurement of disability in low back pain. Spine (Phila Pa 1976) 8(2), 141-144. https://doi.org/10.1097/00007632-198303000-00004 (1983).
Article CAS Google Scholar
Neblett, R. Neblett, R. The Central Sensitization Inventory (CSI) is a method of establishing the clinically significant value to identify central sensitive disorders in a chronic pain outpatient sample. J. Pain 14 438-445. https://doi.org/10.1016/j.jpain.2012.11.012 (2013).
Article Google Scholar
Freynhagen, R., Tolle, T. R., Gockel, U. and Baron, R. The painDETECT project is more than just an assessment tool for the neuropathic pain. Curr. Med. Res. Opin. 32, 1033-1057 (2016).
Article Google Scholar
Devilly, G. J. & Borkovec, T. D. Psychometric properties of the credibility/expectancy questionnaire. J. Behav. Ther. Exp. Psychiatry 31, 73-286 (2000).
Article CAS Google Scholar
Stewart, A. L. & Ware, J. E. Measuring Well-Being and Functioning A medical Outcomes Study Approach (Duke University Press in 1992).
Parkitny, L. and. Rasch analysis supports the use of depression anxiety, stress, and depression scales to gauge mood across groups, however not for individuals suffering from persistent lower back pain. J Clin Epidemiol 65, 189-198. https://doi.org/10.1016/j.jclinepi.2011.05.010 (2012).
Article Google Scholar
Osman, A. and. The Pain Catastrophizing Scale: A further psychometric assessment using adult samples. J Behav Med 23, 351-365. https://doi.org/10.1023/a:1005548801037 (2000).
Article CAS Google Scholar
Roelofs, J., Peters, M. L. McCracken L. and Vlaeyen, J. W. S. The pain vigilance and awareness survey (PVAQ) A further psychometric assessment in fibromyalgia and others chronic pain syndromes. pain 101 299-306. https://doi.org/10.1016/s0304-3959(02)00338-x (2003).
Article Google Scholar
Thompson, E. R. Development and validation of an internationally-reliable short-form version of the negative and positive influence Schedule (PANAS). J. Cross Cult. Psychol. 38, 227-242. https://doi.org/10.1177/0022022106297301 (2007).
Article Google Scholar
Gross, J. J. Gross, J. J. John, O. P. Personal differences in two different processes of regulation of emotions that affect relationship, affect, and wellbeing. J. Pers. Soc. Psychol. 85, 348-362. https://doi.org/10.1037/0022-3514.85.2.348 (2003).
Article Google Scholar
Baer, R. A. and. Construct validity of the five-facet mindfulness questionnaire for nonmeditating and meditating samples. Evaluation 15, 329-342. https://doi.org/10.1177/1073191107313003 (2008).
Article Google Scholar
Herdman, M. and. Development and preliminary tests of the new five-level version of the EQ-5D (EQ-5D-5L). Qal Life Res 20 1727-1736. https://doi.org/10.1007/s11136-011-9903-x (2011).
Article CAS Google Scholar
Topp, C. W., Ostergaard, S. D., Sondergaard, S. & Bech, P. The WHO-5 Well-Being Index: a systematic review of the studies. Psychother psychosom. 84, 171-176. https://doi.org/10.1159/000376585 (2015).
Article Google Scholar
Smith, M. L., Collura, T. F., Ferrera, J. & de Vries, J. Training in Infra-slow fluctuations during the clinical setting: A scientific overview. NeuroRegulation 1, 187-187 (2014).
Article Google Scholar
Rosenbaum, J. F., Fava, M., Hoog, S. L., Ascroft, R. C. & Krebs, W. B. Selective serotonin reuptake inhibitor discontinuation syndrome: A randomized clinical trial. Biol. Psychiat. 44, 77-87 (1998).
Article CAS Google Scholar
Song, C.-Y. and. Validation of the short pain inventory for patients suffering from lower back pain. “Spine” (Philadelphia, Pa. 1976) 41 E937-E942. https://doi.org/10.1097/BRS.0000000000001478 (2016).
Article Google Scholar
Garg, A., Pathak, H., Churyukanov, M. V., Uppin, R. B. and Slobodin, T. M. Low back pain: Critical evaluation of different scales. Eur. Spine J. 29 503-518 (2020).
Article Google Scholar
Dunn, K. M. & Croft, P. R. Classification of low back pain in primary care: using irritation to distinguish the most serious instances. the spine (Philadelphia, Pa. 1976) 30 1887-1892. https://doi.org/10.1097/01.brs.0000173900.46863.02 (2005).
Article Google Scholar
Chiarotto, A. and. Measurement properties of visual analogue scale, numerical rating scale, and the pain severity subscale of the short pain inventory for patients suffering from low back pain The systematic study. J. Pain 20 24, 255-263 (2019).
Article Google Scholar
Kamper, S. J., Maher, C. G. & Mackay, G. Global rating of scales of change An analysis of their strengths and weaknesses, and the implications to design. J. Man. Manip. Ther. 17, 163-170 (2009).
Article Google Scholar
Uddin, Z. and MacDermid J. C. Quantitative sensory testing for chronic muscular skeletal pain. The pain Med 17 1694-1703. https://doi.org/10.1093/pm/pnv105 (2016).
Article Google Scholar
Rolke, R. and. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS) Standardized protocols and reference values. pain The 123rd edition 231-243 (2006).
Article CAS Google Scholar
Mani, R., Adhia, D. B., Leong, S. L., Vanneste, S. & De Ridder, D. Sedentary behavior facilitates conditioned pain modulation in older and middle-aged people with chronic musculoskeletal pain. A cross-sectional study. Reports on pain 4,, E773-E773. https://doi.org/10.1097/PR9.0000000000000773 (2019).
Article Google Scholar
Yarnitsky, D. and. Recommendations on practice of CPM or conditioned pain (CPM) test. Eur J Pain 19 805-806. https://doi.org/10.1002/ejp.605 (2015).
Article CAS Google Scholar
Sekhon, M., Cartwright, M. & Francis, J. J. Acceptability of health interventions Review overview and the creation of a conceptual framework. BMC Health Serv. Res. 17, 1-13 (2017).
Article Google Scholar
Liu, L., Skinner, M. A., McDonough, S. M. & Baxter, G. D. Acupuncture to treat the treatment of chronic lower back discomfort: A randomized controlled feasibility study comparing treatment session number. Clin. Rehabil. 31, 1592-1603 (2017).
Article Google Scholar
Alkoby, O., Abu-Rmileh, A., Shriki, O. and Todder, D. Can be predicted who will be responsive to neurofeedback? An overview of the problem of inefficacy and the current predictors of successful EEG neurofeedback training. Neuroscience 378, 155-164 (2018).
Article CAS Google Scholar
Yonah, R. Postsession dreaming in neurofeedback as a sign for non-declarative learning. NeuroRegulation 7, 2-2 (2020).
Article Google Scholar
Kober, S. E., Witte, M., Ninaus, M., Neuper, C. & Wood, G. Learning to regulate the brain’s activity The impact of unplanned mental strategies. Front. Hum. Neurosci. 7, 695 (2013).
Article Google Scholar
Hasslinger, J., D’Agostini Souto, M. Folkesson Hellstadius L. & Bolte, S. Neurofeedback in ADHD A qualitative investigation of the strategy used in slow cortical training. PLoS One 15, 0233343 (2020).
Article CAS Google Scholar
Autenrieth, M., Kober, S. E., Neuper, C. & Wood, G. What can strategy reports inform us about the results of neurofeedback-based training? An investigation into the voluntary upregulation of sensorimotor rhythm. Front. Hum. Neurosci. 14, 218 (2020).
Article Google Scholar
Davelaar, E. J. Mechanisms of neurofeedback: A computation-theoretic approach. Neuroscience 378, 175-188 (2018).
Article CAS Google Scholar
Gaume, A., Vialatte, A., Mora-Sanchez, A., Ramdani, C. & Vialatte, F.-B. A psychoengineering approach to the neurocognitive processes of neurofeedback and biofeedback. Neurosci. Biobehav. Rev. 68, 891-910 (2016).
Article CAS Google Scholar
Munoz-Moldes S. & Cleeremans, A. Delineating implicit and explicit neural processes involved in neurofeedback. Neurosci. Biobehav. Rev. 118, 681-688 (2020).
Article Google Scholar
Hinrichs, H. and others. Comparison between a wireless dry electrode EEG system and the traditional wired EEG system used for clinical use. Sci. Rep. 10, 1-14 (2020).
Article Google Scholar
Shad, E. H. T., Molinas, M. & Ytterdal, T. Impedance and noise of active and passive dry electrodes for eeg An overview. IEEE Sens. J. 20, 14565-14577 (2020).
Article ADS CAS Google Scholar
Wang, C.-H., Moreau, D. & Kao, S.-C. From the lab to the field: Possible applications for the dry EEG systems to better understand the brain-behavior interaction in sports. Front. Neurosci. 13, 893 (2019).
Article Google Scholar
Adhia, D. B., Mani, R., Turner, P. R., Vanneste, S. & De Ridder, D. Infraslow neurofeedback training alters connectivity for people suffering from long-term back pain. back pain: A second study of a pilot, randomized placebo-controlled study. Neuroscience. 12 1514 (2022).
Article Google Scholar
Schonenberg, M., Weingartner, A.-L., Weimer, K. & Scheeff, J. Believing is achieving: on the role of expectation for treatment in applications of neurofeedback. Prog. Neuropsychopharmacol. Biol. Psychiatry 110129, 105 (2021).
Article Google Scholar
Rance, M. and. Time course of changes in clinical status in response to neurofeedback. Neuroimage 181, 807-813 (2018).
Article Google Scholar
Van Doren, J. and. Sustained effects of neurofeedback in ADHD A thorough review of the literature and a meta-analysis. Eur. Child Adolescent. Psychiatry 28 293-305 (2019).
Article Google Scholar
Dudai, Y. The unending engram: Consolidations will never stop. Annu. Rev. Neurosci. 35, 227-247 (2012).
Article CAS Google Scholar
Kandel, E. R., Dudai, Y. and Mayford, M. R. The molecular and system neuroscience of memory. Cell 157 163-186 (2014).
Article CAS Google Scholar